Home
Class 12
MATHS
" (v) "5^(x)+log(e)x...

" (v) "5^(x)+log_(e)x

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the inverse of the following function.( i ) f(x)=sin^(-1)((x)/(3)),x in[-3,3]( ii )f(x)=5^(log_(e)x),x>0 (iii) f(x)=log_(e)(x+sqrt(x^(2)+1))

(d)/(dx)log_(7)(log_(7)x)= (a) (1)/(x log_(e)x) (b) (log_(e)7)/(x log_(e)x) (c) (log_(7)e)/(x log_(e)x) (d) (log_(7)e)/(x log_(7)x)

[ 197.int5^(log_(e)x)dx is equal to [,(x^(log_(e)5+1))/(log_(e)5+1)+k, 2) 5^(log_(e)x)xxlog5 3) log_(5)x+k, 4) (5^(log_(e)x))/(x)+k]]

if log_(e)(x-1) + log_(e)(x) + log_(e)(x+1)=0 , then

f(x)=5^(log_(e)x),x>0 Find the imverse

" If " g(x) = |{:(a^(-x),,e^(x log _(e)a),,x^(2)),(a^(-3x),,e^(3x log_(e)a),,x^(4)),(a^(-5x),,e^(5x log _(e)a),,1):}| then

" If " g(x) = |{:(a^(-x),,e^(x log _(e)a),,x^(2)),(a^(-3x),,e^(3x log_(e)a),,x^(4)),(a^(-5x),,e^(5x log _(e)a),,1):}| then

" If " g(x) = |{:(a^(-x),,e^(x log _(e)a),,x^(2)),(a^(-3x),,e^(3x log_(e)a),,x^(4)),(a^(-5x),,e^(5x log _(e)a),,1):}| then

If f(x)=|{:(2^(-x),e^(x log_(e)2),x^(2)),(2^(-3x),e^(3x log_(e)2),x^(4)),(2^(-5x),e^(5x log_(e)2),1):}| then show that f(x) is symmetric about origin

Find the derivative of (5sqrt(x)+7"log"_(e)x+"log"_(a)x) with respect to 'x'