Home
Class 12
MATHS
" 1f "y=e^(tan^(-1)x)" ,prove that "(1+x...

" 1f "y=e^(tan^(-1)x)" ,prove that "(1+x^(2))y_(2)+(2x-1)y_(1)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(tan^(-1)x), prove that (1+x^(2))y_(2)+(2x-1)y_(1)=0

If y=e^(tan^^)((-1)x), prove that (1+x^(2))y_(2)+(2x-1)y_(1)=0

If y=e^(tan^(-1)x) , prove that (1+x^2)y_2+(2x-1)y_1=0 .

If e^(cot^(-1)x) Prove that (1+x^(2))y_(2) +(2x + 1)y_(1) = 0 .

If y=e^"tan"^((-1)"x")), prove that (1+x^2)y_2+(2x-1)y_1=0.

If y=e^(tan^-1x), prove that (1+x^2)y_2+(2x-1)y_1=0

If log y=tan^(-1)x, show that (1+x^(2))y_(2)+(2x-1)y_(1)=0

If y=e^(tan^(-1)x) , show that (1+x^(2))y''+(2x-1)y'=0

If y=(sin^(-1)x)^(2), prove that (1-x^(2))y_(2)-xy_(1)-2=0

If y=e^(tan^(-1)x) , show that (1+x^(2))y''+(2x-1)y'=0 .