Home
Class 12
MATHS
If x=1+isqrt3, y=1-isqrt3, z=2 then prov...

If `x=1+isqrt3, y=1-isqrt3, z=2` then prove that `x^p+y^p=z^p` for every prime `p>3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z = frac{1-isqrt3}{1+isqrt3} , then arg(z) =

x+iy=(1-isqrt3)^100 , then (x,y)=

If z= frac{1+isqrt3}{sqrt3+i} then (barz)^100 lies in

If z=((1+isqrt3)^2)/(4i(1-isqrt3)) is a complex number then |z| is

If reciprocals of (y-x),2(y-a),(y-z) are in A.P then prove that x-a, y-a, z-a are in G.P

If z=(1+isqrt3)^100 , then frac{Re(z)}{Im(z)} equals

If y-z,2(y-a),y-x are in H.P. prove that x-a,y-a,z-a are in G.P.

If y-z,2(y-a),y-x are in H.P. prove that x-a,y-a,z-a are in G.P.