Home
Class 12
MATHS
show that [[(a^2+b^2)/c,c,c],[a,(b^2+c^2...

show that `[[(a^2+b^2)/c,c,c],[a,(b^2+c^2)/a,a],[b,b,(a^2+b^2)/c]] = 4abc`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that , |[(a^2+b^2)/c,c,c],[a,(b^2+c^2)/a,a],[b,b,(c^2+a^2)/b]|=4abc

(a^(2)+b^(2))/(c),c,ca,(b^(2)+c^(2))/(a),ab,b,(c^(2)+a^(2))/(2)]|=4abc

Prove: |((a^2+b^2)/c,c,c),( a,(b^2+c^2)/a ,a),( b,b,(c^2+a^2)/b)|=4a b c

Prove: |((a^2+b^2)/c,c,c),( a,(b^2+c^2)/a ,a),( b,b,(c^2+a^2)/b)|=4a b c

|((a^2+b^2)/c,c,c),(a,(b^2+c^2)/a,a),(b,b,(a^2+c^2)/b)| equal to : (A) 4abc (B) a^2+b^2+c^2 (C) (a+b+c)^2 (D) None of These

|((a^2+b^2)/c,c,c),(a,(b^2+c^2)/a,a),(b,b,(a^2+c^2)/b)| equal to : (A) 4abc (B) a^2+b^2+c^2 (C) (a+b+c)^2 (D) None of These

For a non-/cro real a,b and c |((a^2+b^2)/c,c,c),(a,(b^2+c^2)/a,a),(b,b,(c^2+a^2)/b)|=alpha abc, then the value of alpha is -

Show that , |{:((a^2+b^2)/c," "c," "c),(" "a,(b^2+c^2)/a," "a),(" "b," "b,(c^2+a^2)/b):}|=4abc

Using properties of determinants, show that: |[[(b+c)^2, a^2, a^2],[b^2, (c+a)^2, b^2],[c^2,c^2,(a+b)^2]]|= 2abc (a+b+c)^3 .

If |((a^(2)+b^(2))//c, c, c),(a,(b^(2)+c^(2))//a,a),(b,b,(c^(2)+a^(2))//b)|=k(abc) then k=