Home
Class 12
MATHS
sin^(-1)[2ax sqrt(1-a^(2)x^(2))]...

sin^(-1)[2ax sqrt(1-a^(2)x^(2))]

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate sin^(-1) (2ax sqrt(1-a^2x^2)) wth respect to sqrt(1-a^2x^2) .

Differentiate sin^(-1)(2a xsqrt(1-a^2x^2)) with respect to sqrt(1-a^2x^2) , if -1/(sqrt(2)) < ax<1/(sqrt(2)) .

Differentiate sin^(-1)(2a xsqrt(1-a^2x^2)) with respect to sqrt(1-a^2x^2) , if -1/(sqrt(2)) < ax<1/(sqrt(2)) .

Differentiate sin^(-1)(2ax1-a^(2)x^(2))w it hre s p e c tt osqrt( )sqrt(1-a^(2)x^(2)), if -(1)/(sqrt(2))

(tan^(-1)x)/(sqrt(1-x^(2))) withrespectto sin ^(-1)(2x sqrt(1-x^(2)))

sin^(-1)(2x sqrt(1-x^(2)))=2sin^(-1)x is true if- x in[0,1] b.[-(1)/(sqrt(2)),(1)/(sqrt(2))] c.[-(1)/(2),(1)/(2)]d[-(sqrt(3))/(2),(sqrt(3))/(2)]

Prove that : sin^(-1) (2x sqrt(1-x^(2)))= 2 sin^(-1) x, - 1/(sqrt(2)) le x le 1/(sqrt(2))

Prove that : sin^(-1) (2x sqrt(1-x^(2)) ) = 2 sin^(-1) x , -1/(sqrt(2))le x le 1/(sqrt(2)

sin^(-1)(2x sqrt(1-x^(2))),x in[(1)/(sqrt(2)),1] is equal to

Prove the following : sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,x in[-1/sqrt2,1/sqrt2]