Home
Class 12
MATHS
cot(sin^(-1)(sqrt(1-alpha^(2))))=sin(tan...

cot(sin^(-1)(sqrt(1-alpha^(2))))=sin(tan^(-1)x sqrt(6))

Promotional Banner

Similar Questions

Explore conceptually related problems

If cot(sin^(-1)sqrt(1-x^(2)))=sin(tan^(-1)(x sqrt(6))),x!=, then possible value of x is

If cot(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)(xsqrt(6))),\ x!=0 , then possible value of x is

If cot(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)(xsqrt(6))),\ x!=0 , then possible value of x is

cot_(sin x)^(-1)(sqrt(cos alpha))-tan^(-1)(sqrt(cos alpha))=x then

If cot^(-1)(sqrt(cos alpha))-tan^(-1)(sqrt(cos alpha))=x then sin x is tan^(2)(alpha)/(2)(b)cot^(2)(alpha)/(2)(c)tan^(2)alpha(d)cot(alpha)/(2)

cot^(-1)(sqrt(cosalpha))-tan^(-1)(sqrt(cosalpha))=x , then sin x =

cot^(-1)(sqrtcosalpha)-tan^(-1)(sqrt(cos alpha))=x , then sin x is equal to a) tan^2""alpha/2 b) cot^2""alpha/2 c) tan alpha d) cot ""alpha/2

cot^(-1)((alpha)/(2))-tan^(-1)(sqrt(cosalpha))=x , then sin x is equal to