Home
Class 12
MATHS
|vec a - vec b|=|vec a + vec b| if and o...

`|vec a - vec b|=|vec a + vec b|` if and only if......

Promotional Banner

Similar Questions

Explore conceptually related problems

vec a-vec b|=|vec a+vec b| if if and only if....

Prove that (vec a+vec b)* (vec a+ vec b)=|vec a|^2 +|vec b|^2, if and only if vec a,vec b are perpendicular.

Prove that ( veca+ vec b).( vec a+ vecb)= | veca|^2+| vec b|^2 , if and only if vec a ,vec b are perpendicular, given vec a!= vec0, vec b!= vec0

Prove that (vec a + vec b).(vec a + vec b) = | vec a|^(2) + |vec b|^(2) , if and only if vec a, vec b are perpendicualr, given a ne vec 0, b ne vec 0 .

If vec a and vec b are vectors such that |vec a + vec b| = |vec a - vec b| , then the angle between vec a and vec b is

For non-zero vectors vec a , vec b ,a n d vec c ,|( vec axx vec b)dot vec c|=| vec a|| vec b|| vec c| holds if and only if a. vec a* vec b=0, vec b* vec c=0 b. vec b* vec c=0, vec c* vec a=0 c. vec c* vec a=0, vec a* vec b=0 d. vec a* vec b=0, vec b* vec c=0, vec c* vec a=0

For non-zero vectors vec a , vec b ,a n d vec c ,|( vec axx vec b)dot vec c|=| vec a|| vec b|| vec c| holds if and only if a. vec a* vec b=0, vec b* vec c=0 b. vec b* vec c=0, vec c* vec a=0 c. vec c* vec a=0, vec a* vec b=0 d. vec a* vec b=0, vec b* vec c=0, vec c* vec a=0

For non-zero vectors vec a , vec b ,a n d vec c ,|( vec axx vec b)dot vec c|=| vec a|| vec b|| vec c| holds if and only if a. vec a* vec b=0, vec b* vec c=0 b. vec b* vec c=0, vec c* vec a=0 c. vec c* vec a=0, vec a* vec b=0 d. vec a* vec b=0, vec b* vec c=0, vec c* vec a=0

For non-zero vectors vec a , vec b ,a n d vec c ,|( vec axx vec b)dot vec c|=| vec a|| vec b|| vec c| holds if and only if a. vec a* vec b=0, vec b* vec c=0 b. vec b* vec c=0, vec c* vec a=0 c. vec c* vec a=0, vec a* vec b=0 d. vec a* vec b=0, vec b* vec c=0, vec c* vec a=0

Prove that (vec a+vec b)*(vec a+vec b)=|vec a|^(2)+|vec b|^(2) and only if vec a,vec b are perpendicular,given vec a!=vec 0,vec b!=vec 0