Home
Class 12
MATHS
The points with position vectors vec a -...

The points with position vectors `vec a - 2vecb+3vec c,2veca+lambda vecb-4vec c,-7 vec b+10 vec c` will be collinear if `lambda=......`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the point A,B,C with position vectors vec a-2vec b+3vec c,2vec a+3vec b-4vec c and -7vec b+10vec c are collinear.

Show that the points with position vectors vec a-2vec b+3vec c,-2vec a+3vec b-vec c and 4vec a-7vec b+7vec c are collinear.

Show that the point A ,B ,C with position vectors vec a-2 vec b+3 vec c ,2 vec a+3 vec b-4 vec c and -7 vec b+10 vec c are collinear.

Show that the point A ,B ,C with position vectors vec a-2 vec b+3 vec c ,2 vec a+3 vec b-4 vec c and -7 vec b+10 vec c are collinear.

The three points whose position vectors are vec a - vec 2b + 3 vec c, vec 2a + vec 3b - 4 vec c and - 7 vec b + 10 vec c

If the vectors vec a+vec b+vec c,vec a+lambdavec b+2vec c,-vec a+vec b+vec c are linearly dependent then lambda

Show that the points A,B,C with position vectors 2vec a+3vec b+5vec c,vec a+2vec b+3vec c and 7vec a-vec c respectively,are collinear.

If the position vectors of three points are vec a-2vec b+3vec c,2vec a+3vec b-4vec c,-7vec b+10vec c then the three points are

Prove that : veca*(vecb+vec c)xx(veca+2vecb+3vec c)=[veca vecb vec c]

If A,B and are collinear find lambda non-collinear such that vec c=(lambda-2)vec a+vec b and vec d=(2 lambda+1)vec a-vec b,vec c and vec d are collinear find lambda