Home
Class 12
MATHS
If a and b are nonzero real numbers such...

If a and b are nonzero real numbers such that |a|=|b| ,compute the absolute value of the expression `((b^(2))/(a^(2))+(a^(2))/(b^(2))-2)times((a+b)/(b-a)+(b-a)/(a+b))times((1/a^2+1/b^2)/(1/b^2-1/a^2)-(1/b^2-1/a^2)/(1/a^2+1/b^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are non-zero real numbers, then the minimum value of the expression ((a^(8)+4a^(4)+1)(b^(4)+3b^(2)+1)(c^(2)+2c+2))/(a^(4)b^(2)) equals

If a, b, c are three distinct positive real numbers, then the least value of ((1+a+a^(2))(1+b+b^(2))(1+c+c^(2)))/(abc) , is

If A and B be two complex numbers such that |1-A'B|^(2)-|A-B|^(2)=K(1-|A|^(2))(1-|B|^(2)) then the value of k is (A)1(B)2(C)(1)/(2)(D)(1)/(3)

The value of 1/((1-a)(1-b))+ a^(2)/((1-a)(b-a)) -b^(2)/((b-1)(a-b)) is:

What is the value of [(a^(-2)b^(3)) div (a^(1)b^(-1))] xx [(a^(2)b^(-4)) div (a^(-1)b^(2))] ?

Let (a_(1),b_(1)) and (a_(2),b_(2)) are the pair of real numbers such that 10,a,b,ab constitute an arithmetic progression. Then, the value of ((2a_(1)a_(2)+b_(1)b_(2))/(10)) is

(a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^(2))/(b^(2)-a^(2))

(a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^(2))/(b^(2)-a^(2))