Home
Class 12
MATHS
|vec(alpha) + vec(beta)|=|vec(alpha) - v...

`|vec(alpha) + vec(beta)|=|vec(alpha) - vec(beta)|`, then (A) `vec(alpha)` is parallel to `vec(beta)` (B) `vec(alpha)` is perpendicular to `vec(beta)` (C) `|vec(alpha)|` = `|vec(beta)|` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If |vec alpha + vec beta |=| vec alpha - vec beta|, then :

Let hat(alpha) = 3 hat(i)+hat(j) and hat(beta)= 2 hat(i)-hat(j)+3hat(k) . If vec(beta)=vec(beta)_(1)-vec(beta)_(2) , where vec(beta)_(1) is parallel to vec(alpha) and vec(beta)_(2) is perpendicular to vec(alpha) then vec(beta)_(1)xx vec(beta)_(2) is equal to :

Let hat(alpha) = 3 hat(i)+hat(j) and hat(beta)= 2 hat(i)-hat(j)+3hat(k) . If vec(beta)=vec(beta)_(1)-vec(beta)_(2) , where vec(beta)_(1) is parallel to vec(alpha) and vec(beta)_(2) is perpendicular to vec(alpha) then vec(beta)_(1)xx vec(beta)_(2) is equal to :

If vec(alpha) and vec (beta) are perpendicular to each other , show that | vec(alpha) + vec(beta)|^(2) = |vec(alpha)-vec(beta)|^(2)

If vec(alpha) and vec (beta) are perpendicular to each other , show that |vec(alpha)+vec(beta)|^(2) = | vec(a)|^(2) + |vec(beta)|^(2)

If a vector vec(alpha) lies in the plane of vec(beta)andvec(gamma), then

Given that (vec beta-vec alpha) * (vec beta + vec alpha) = 8 and vec alpha * vec beta = 2 Also | vec alpha | = 1 then angle between (vec beta-vec alpha) and (vec beta + vec alpha) is

If vec(alpha), vec(beta),vec(gamma) are three non-collinear unit vectors such that vec(alpha)+2vec(beta)+3vec(gamma) is collinear with vec(beta)+vec(y) and vec(alpha)+2vec(beta) is collinear with vec(beta)-vec(gamma) , then 2vec(alpha).vec(beta)+6vec(alpha).vec(gamma) +3vec(beta).vec(gamma) equal to