Home
Class 12
MATHS
The largest side of a triangle ABC that ...

The largest side of a triangle ABC that can be inscribed in acrcle so that `(a^3+b^3+c^3)/(sin^3 A + sin^3 B+ sin^3 C)=64` is (where `a, b, c` are lengths of sides opposite to vertices `A, B, C` of the triangle ABC respectively)

Promotional Banner

Similar Questions

Explore conceptually related problems

Using vectors , prove that in a triangle ABC a/(sin A) = b/(sin B) = c/(sin C) where a,b,c are lengths of the ideas opposite to the angles A,B,C of triangle ABC respectively .

In a triangle ABC, a ge b ge c. If (a^(3)+b^(3)+c^(3))/(sin ^(3)A +sin ^(3) B+sin ^(3)C)=8, then the maximum value of a

If in a triangle ABC, 4 sin A= 4 sin B=3 sin C , the cos C=

In a triangle ABC , a =2,b=3 and sin A = (2)/(3) then cos C=

In Delta ABC,a,b,c are the opposite sides of the angles A,B and C respectively,then prove (sin B)/(sin(B+C))=(b)/(a)

In a triangle ABC, a ge b ge c. If (a^(3)+b^(3)+c^(3))/(sin ^(3)A +sin ^(3) B+sin ^(3)C)=8, then the maximum value of a sin^(3) A+sin ^(3) B+ sin^(3)C

In a triangle ABC, a ge b ge c. If (a^(3)+b^(3)+c^(3))/(sin ^(3)A +sin ^(3) B+sin ^(3)C)=8, then the maximum value of a sin^(3) A+sin ^(3) B+ sin^(3)C

In any triangle ABC, prove that : a^3 sin (B-C)+ b^3 sin (C-A)+ c^3 sin (A-B)=0 .

If in a triangle ABC, the altitudes from the A,B,C on opposite sides are in H.P. then sinA, sin B, sin C are in