Home
Class 11
MATHS
If f(x)=(2^x + 2^(-x))/(2^x - 2^(-x)), t...

If `f(x)=(2^x + 2^(-x))/(2^x - 2^(-x))`, then `f^(-1) (x)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=log((1+x)/(1-x)), then (a) f(x_(1))f(x)=f(x_(1)+x_(2))(b)f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^(2)+x)(d)f(x_(1))+f(x_(2))=f((x_(1)+x_(2))/(1+x_(1)x_(2)))

If f(x)=sqrt(x^(2)-2x+1), then f' (x) ?

If f(x)=sqrt(x^(2)-2x+1), then f' (x) ?

If f(x)=1+2x and g(x) = x/2 , then: (f@g)(x)-(g@f)(x)=

If f(x-1)=f(x+1) , where f(x)=x^2-2x+3 , then: x=

If f(x) = ( x ( x -1 ) )/2 then f( x + 2 )

If f(x)=(x^(2)-1)/(x^(2)+1) prove that f((1)/(x))=-f(x)

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))