Home
Class 12
MATHS
Lim(n->oo)[1/n^2 * sec^2 (1/n^2)+2/n^2 *...

`Lim_(n->oo)[1/n^2 * sec^2 (1/n^2)+2/n^2 * sec^2 (4/n^2)+..............+1/n * sec^2 1]`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n to oo) [1/(n^2) "sec"^2 1/(n^2) + 2/(n^2) "sec"^(2) 4/(n^2) + …… + 1/n "sec"^(2) 1] equals :

Evaluate: underset(nrarrinfty)lim[(1/n^2sec^2(1/(n^2))+2/n^2sec^2((4)/(n^2))....+1/nsec^2(1)]

lim_ (n rarr oo) [(1) / (n ^ (2)) * sec ^ (2) ((1) / (n ^ (2))) + (2) / (n ^ (2)) * sec ^ (2) ((4) / (n ^ (2))) + ............ + (1) / (n) * sec ^ (2) 1]

Evaluate: ("lim")_(nvecoo)[1/(n^2)sec^2 1/(n^2)+2//n^2sec^2 4/(n^2)++1/nsec^2 1]

Evaluate: ("lim")_(nvecoo)[1/(n^2)sec^2 1/(n^2)+2//n^2sec^2 4/(n^2)++1/nsec^2 1]

Evaluate: lim_(n rarr oo)[(1)/(n^(2))sec^(2)(1)/(n^(2))+2/n^(2)sec^(2)(4)/(n^(2))+...+(1)/(n)sec^(2)1]]

{:(" "Lt),(n rarr oo):} [ (1)/(n^(2)) sec^(2). (1)/(n^(2)) + (2)/(n^(2))sec^(2). (4)/(n^(2))+...+1/n sec^(2)1]=

Definite integration as the limit of a sum : lim_(ntooo)[(1)/(n^(2))sec^(2)""(1)/(n^(2))+(2)/(n^(2))sec^(2)""(4)/(n^(2))+.......+(1)/(n)sec^(2)1] a. 'tan1 b. 1/2tan1 c. 1/2sec1 d. 1/2cosec 1