Home
Class 11
MATHS
Prove that: cos(pi/4-A)cos(pi/4-B)-sin(p...

Prove that: `cos(pi/4-A)cos(pi/4-B)-sin(pi/4-A)sin(pi/4-B)="sin"(A+B)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos(pi/4-x)cos(pi/4-y)-sin(pi/4-x)sin(pi/4-y)=sin(x+y)

Prove that: cos(pi/4-x)cos(pi/4-y)-sin(pi/4-x)sin(pi/4-y)=sin(x+y)

cos(pi/4-x)cos(pi/4-y)-sin(pi/4-x)sin(pi/4-y)=sin(x+y)

cos(pi/4-A)-sin(pi/4+A)=0

Prove that cos (pi/4-x) cos (pi/4-y)- sin (pi/4-x) sin(pi/4-y) =sin (x+y)

Prove the following: cos(pi/4-x)cos(pi/4-y)-sin(pi/4-x)sin(pi/4-y)= sin (x+ y)

Evaluate cos (2pi/3)cos (pi/4)-sin(2pi/3)sin(pi/4)

Prove the following: cos(pi/4-x).cos(pi/4-y)-sin(pi/4-x).sin(pi/4-y)=sin(x+y)

Prove that: cos((pi)/(4)-x)cos((pi)/(4)-y)-sin((pi)/(4)-x)sin((pi)/(4)-y)=sin(x+y)

Prove that cos((pi)/(4)-x)cos((pi)/(4)-y)-sin((pi)/(4)-x)sin((pi)/(4)-y)=sin(x+y)