Home
Class 12
MATHS
If sum(r=1)^10 r(r-1)10Cr = k. 2^9, the...

If `sum_(r=1)^10 r(r-1)10C_r = k. 2^9`, then k is equal to-

Promotional Banner

Similar Questions

Explore conceptually related problems

If Sigma_(r=1)^(10) r(r-1) ""^(10)C_r = k. 2^9

Find sum_(r=1)^(10) (r+2)(3r+1).

The value of sum_(r=1)^(n+1)(sum_(k=1)^n "^k C_(r-1)) ( where r ,k ,n in N) is equal to a. 2^(n+1)-2 b. 2^(n+1)-1 c. 2^(n+1) d. none of these

The value of sum_(r=1)^(n+1)(sum_(k=1)^n "^k C_(r-1)) ( where r ,k ,n in N) is equal to a. 2^(n+1)-2 b. 2^(n+1)-1 c. 2^(n+1) d. none of these

The value of sum_(r=1)^(n+1)(sum_(k=1)^n ^kC_(r-1)) (where r, k, n in N ) is equal to

If C_(r)=10C_(r), then sum_(r=1)^(10)C_(r-1)C_(r) is equal to

The value of sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1) is equal to

The value of sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1) is equal to