Home
Class 12
MATHS
Find the degree of the polynomial 1/(sqr...

Find the degree of the polynomial `1/(sqrt(4x+1)){((1+sqrt(4x+1))/2)^7-((1+sqrt(4x+1))/2)^7}`

Promotional Banner

Similar Questions

Explore conceptually related problems

If n be the degree of the polynomial sqrt(3x^(2)+1){(x+sqrt(3x^(2)+1))^(7)-(x-sqrt(3x^(2)+1))^(7)} then n is divisible by

(1)/(sqrt(4x+1)){((1+sqrt(sqrt(x+1)))/(2))^(n)-((1-sqrt(4x+1))/(2))^(n)}=a_(0)+a_(1)x

sqrt(x+1)-sqrt(x-1)=sqrt(4x-1)

The expression (1)/( sqrt( 3x +1)) [ ( ( 1+ sqrt( 3x + 1))/(2))^(7) - (( 1- sqrt ( 3x +1))/(2))^(7)] is a polynomial in x of degree eual to

The expression : (1)/(sqrt((3x + 1))) ( { ( (1 + sqrt(3x + 1))/(2) )^(7) - ( (1 - sqrt(3x + 1))/(2))^(7) } ) is a polynomial in x of degree is :

find x: (sqrt(x+1)+sqrt(x-1))/(sqrt(x+1)-sqrt(x-1))=3/7

Degree of the polynomial (x^(2)-sqrt(1-x^(3)))^(4)+(x^(2)+sqrt(1-x^(3)))^(4) is

State the degree of each the following polynomials : sqrt(2)x^(2) -5x^(3) + 7x +(1)/(4)

If 1/(sqrt(4x+1)){((1+sqrt(4x+1))/2)^n-((1-sqrt(4x+1))/2)^n}=a_0+a_1x then find the possible value of ndot