Home
Class 12
MATHS
Let f(n)=sum(r=0)^n sum(k=r)^n ((k),(r)...

Let `f(n)=sum_(r=0)^n sum_(k=r)^n ((k),(r))`.Also if `f(n)=2047`, then find the value of n.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(n)=sum_(r=0)^(n)sum_(k=r)^(n)([kr]). Also if f(n)=2047 ,then find the value of n

If f(n)=sum_(s=1)^(n)sum_(r=s)^(n)C_(r)^(r)C_(s), then f(3)=

Let f(n)=sum_(r=0)^nsum_(k=r)^n(kC r) Find the total number of divisors of f(9)dot

Let f(n)=sum_(r=1)^(n)r^(2)C_(r)^(2)* Then ,f(5)=

Let f(n)=sum_(r=0)^(n)sum_(k=r)^(n)([kr]). Find the total number of divisors of f(9)

Let f(n)=sum_(r=0)^nsum_(k=r)^n(k r)dot Find the total number of divisors of f(9)dot

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(n) and sum_(r=0)^(n)(C_(r))/(r+1)=k then the value of k is

The value of sum_(r=1)^(n+1)(sum_(k=1)^(n)C(k,r-1))=

Let S_(n)=sum_(r=1)^(oo)(1)/(n^(r)) and sum_(n=1)^(k)(n-1)S_(n)=5050, then k=