Home
Class 12
MATHS
A=[[1,2], [2,1]] and f(x)=x^2-2x-3 then ...

`A=[[1,2], [2,1]]` and `f(x)=x^2-2x-3` then show that `f(A)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(1 ,2 ),(2, 1)] and f(x)=x^2-2x-3 , show that f(A)=O .

If A=[[1,22,1]] and f(x)=x^(2)-2x-3 show that f(A),=O

If A={:[(1,2),(2,1)]:} and f(x)=x^(2)-2x-3, show that f(A) = 0.

If f(x) = |x| then show that f'(2) =1

If A = [(1,2),(2,1)], f(x) = x^(2) - 2 x - 3 , show that f(A) = 0

If f(x)=x/(2^(x)-1) , then show that f(-1) = 2.

Let A=[[2,3],[-1,2]] and f(x)=x^2-4x+7 Show that f(A)=0 Use this result of find A^5

Let A=[[2,3-1,2]] and f(x)=x^(2)-4x+7 Show that f(A)=0 Use this result of find A^(5)

If f(x)=2x^(2)+3x-5 , then prove that f'(0)+3f'(-1)=0

If A = [(2,3),(-1,2)] f(x) = x^(2) - 4x + 7 show that f(A) = 0