Home
Class 10
MATHS
[" 40."x+y=a+b],[" ax "-by=a^(2)-b^(2)]...

[" 40."x+y=a+b],[" ax "-by=a^(2)-b^(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x and y by cross multiplication method x + y = a + b ax – by = a^(2) – b^(2)

Solve by the method of substitution: x+y=a+b, ax-by=a^2-b^2

Solve for xandy: (x)/(a)+(y)/(b)=2,ax-by=a^(2)-b^(2)

Solve: (x)/(a)+(y)/(b)=2,quad ax-by=a^(2)-b^(2)

(x)/(a)-(y)/(b)=0,ax+by=a^(2)+b^(2)

If a circle passes through the point (a, b) and cuts the circle x^2 + y^2 = 4 orthogonally, then the locus of its centre is (a) 2ax+2by-(a^(2)+b^(2)+4)=0 (b) 2ax+2by-(a^(2)-b^(2)+k^(2))=0 (c) x^(2)+y^(2)-3ax-4by+(a^(2)+b^(2)-k^(2))=0 (d) x^(2)+y^(2)-2ax-3by+(a^(2)-b^(2)-k^(2))=0

The value of y which satisfies (x)/(a)=(y)/(b) and ax+by=a^(2)+b^(2) is

If a, b, c, x, y, z are real and a^(2)+b^(2) + c^(2)=25, x^(2)+y^(2)+z^(2)=36 and ax+by+cz=30 , then (a+b+c)/(x+y+z) is equal to :

If a, b, c, x, y, z are real and a^(2)+b^(2) + c^(2)=25, x^(2)+y^(2)+z^(2)=36 and ax+by+cz=30 , then (a+b+c)/(x+y+z) is equal to :