Home
Class 12
MATHS
If 2int0^1 tan^(-1)x dx= int0^1 cot^(-1)...

If `2int_0^1 tan^(-1)x dx= int_0^1 cot^(-1)(1-x+x^2) dx` then `int_0^1 tan^(-1)(1-x+x^2) dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^1cot^(- 1)(1-x+x^2)dx

If 2int_(0)^(1)tan^(-1)xdx=int_(0)^(1)cot^(-1)(1-x+x^(2))dx then int_(0)^(1)tan^(-1)(1-x-x^(2))dx is equal to

If 2int_(0)^(1)tan^(-1)xdx=int_(0)^(1)cot^(-1)(1-x+x^(2))dx then int_(0)^(1)tan^(-1)(1-x+x^(2))dx=

If 2int_(0)^(1) tan^(-1)xdx=int_(2)^(1)cot^(-1)(1-x+x^(2))dx . Then int_(0)^(1) tan^(-1)(1-x+x^(2))dx is equal to

If 2 int_(0)^(1) tan^(-1) x dx = int_(0)^(1) cot^(-1) (1- x+x^(2))dx , then int_(0)^(1) tan^(-1) (1-x+x^(2))dx is equal to

int_(0)^(x)tan^(-1)(1-x+x^(2))dx

Find: int_0^1x (tan^-1 x)^2 dx

2 int_(0)^(1) (tan^(-1)x)/(x) dx=

int_(0)^(1)x(tan^(-1)x)^(2)dx

int_0^1 tan^1x/(1+x^2)dx