Home
Class 11
MATHS
" If "f(x)=x^(3)-(1)/(x^(3))," show that...

" If "f(x)=x^(3)-(1)/(x^(3))," show that "f(x)+f((1)/(x))=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)= x^(3)- (1)/(x^(3)) then show that f(x)+ f((1)/(x))= 0

If f(x)=(1+x)/(1-x), show that: f(2x)=(3f(x)-1)/(3-f(x)) .

If f(x)=(3x+2)/(4x-3) show that f(x)=f^(-1)(x)

If f(x) = (1)/(1-x) , show that f(f(x)) = x

If f: R - {0} to R is defined by f(x) = x^(3)-1/(x^3) , then S.T f(x) + f(1//x) = 0 .

If f(x)=(x-1)/(x+1),x!=-1, then show that f(f(x))=-(1)/(x) provided that x!=0,1

If f(x)=(x-1)/(x+1), then show that f((1)/(x))=-f(x) (ii) f(-(1)/(x))=(1)/(f(x))

If f(x)=(x-1)/(x+1),x!=-1, then show that f(f(x))=-(1)/(x), prove that x!=0

If f(x)=(x-1)/(x+1) then show that f(1/x)=-f(x) and f(-1/x)=(-1)/f(x)