Home
Class 12
MATHS
cosA=acosB ,sinA=bsinB=>(b^2-a^2)sin^2B=...

`cosA=acosB ,sinA=bsinB=>(b^2-a^2)sin^2B=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cosA=acosB and sinA=bsinB , then (b^(2)-a^(2))sin^(2)B=?

Prove that (cosA-cosB)^2+(sinA-sinB)^2=4sin^2((A-B)/2)

Prove that, (cosA-cosB)^(2)+(sinA-sinB)^(2)=4sin^(2)((A-B)/(2))

Prove that: (cosA-cosB)^(2)+(sinA-sinB)^(2)=4sin^(2)(A-B)/(2)

If (cosA)/(cosB)=n and (sinA)/(sinB)=m,then (m^(2)-n^(2))sin^(2)B=

If (cosA)/(cosB)=n and (sinA)/(sinB)=m,then (m^(2)-n^(2))sin^(2)B=

tanA = a tanB, sinA = bsinB rArr (b^(2) - 1)/(a^(2) - 1) =

If sinA+sinB=a and cosA+cosB=b, show that cos(A+B) = (b^2-a^2)/(b^2+a^2)

Given that 2sinAcosA+(cosA+sinA)^2-(2cosA+sinA)^2=p sin^2A+q then find p and q