Home
Class 11
MATHS
" If "f(2)=2" and "f'(2)=1," then the va...

" If "f(2)=2" and "f'(2)=1," then the value of "lim_(x rarr2)(xf(2)-2f(x))/(x-2)" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(2) = 2, and f'(2) = 1, then the value of lim_(xrarr2)(xf(2)-2f(x))/(x-2)

lim_(x rarr2)(f(x)-f(2))/(x-2)=

Let f: R rarr R be a function such that f(2)=4 and f'(2)=1 . Then, the value of lim_(x rarr 2) (x^(2)f(2)-4f(x))/(x-2) is equal to

If f(2)=4 and f'(2)=1, then find (lim)_(x rarr2)(xf(2)-2f(x))/(x-2)

If f(2)=2 and f'(2)=1, then find lim_(x rarr2)(xf(2)-2f(x))/(x-2)

If f(2)=4,f'(2)=4 , then evalute lim_(xto2)(xf(2)-2f(x))/(x-2) .

Let f(2)=4 and f'(2)=4. Then lim_(x rarr2)(xf(2)-2f(x))/(x-2) is equal to

If f(2)=4,f'(2)=4, then value of underset(x rarr 2)lim(xf(2)-2f(x))/(x-2) is

If f(2) = 4 and f^(')(2) =1 then lim_(x rarr 2) (x f(2)-2f (x))/(x-2)