Home
Class 12
MATHS
30*[1f sqrt(y+x)+sqrt(y-x)=c," show that...

30*[1f sqrt(y+x)+sqrt(y-x)=c," show that "(dy)/(dx)=(y)/(x)-sqrt((y^(2))/(x^(2))-1)

Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt(y+x)+sqrt(y-x)=c show that (dy)/(dx)=(y)/(x)-sqrt(((y^(2))/(x^(2)))-1)

If sqrt(y+x)+sqrt(y-x)=c ,show that (dy)/(dx)=y/x-sqrt((y^2)/(x^2)-1.)

If y sqrt(1-x^(2))+x sqrt(1-y^(2))=1 show that (dy)/(dx)=-sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^2)+sqrt(1-y^2)=a(x-y), prove that (dy)/(dx)=sqrt((1-y^2)/(1-x^2))

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), provethat (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y),show(dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^2) + sqrt(1-y^2) = a(x-y), show that dy/dx = sqrt((1-y^2)/(1-x^2))