Home
Class 9
MATHS
a^(2)-b^(2)+2bc-c^(2)...

a^(2)-b^(2)+2bc-c^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Factorise by taking at the common factors: (i) ab(a^(2) + b^(2) -c^(2))-bc(c^(2)-a^(2) - b^(2)) +ca(a^(2) + b^(2)-c^(2)) (ii) 2x(a-b) +3y(5a-5b) + 4z(2b-2a)

In a triangle ABC , if a^(2)-b^(2)-c^(2)=bc(lambda^(2)-2lambda-1) , then

Factorize each of the following expressions: ab(a^(2)+b^(2)-c^(2))+bc(a^(2)+b^(2)-c^(2))-ca(a^(2)+b^(2)-c^(2))

det[[bc-a^(2),ca-b^(2),ab-c^(2)ca-b^(2),ab-c^(2),bc-a^(2)ab-c^(2),bc-a^(2),ca-b^(2)]]=det[[a,b,cb,c,ac,a,b]]^(2)

If |{:(bc-a^(2),ac-b^(2),ab-c^(2)),(ac-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ac-b^(2)):}|=k(a^(3)+b^(3)+c^(3)-3abc)^(l) then the value of (k, l) is

Let a, b and c are the roots of the equation x^(3)-7x^(2)+9x-13=0 and A and B are two matrices given by A=[(a,b,c),(b,c,a),(c,a,b)] and B=[(bc-a^(2),ca-b^(2),ab-c^(2)),(ca-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ca-b^(2))] , then the value |A||B| is equal to

Let a, b and c are the roots of the equation x^(3)-7x^(2)+9x-13=0 and A and B are two matrices given by A=[(a,b,c),(b,c,a),(c,a,b)] and B=[(bc-a^(2),ca-b^(2),ab-c^(2)),(ca-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ca-b^(2))] , then the value |A||B| is equal to

Suppose A, B, C are defined as A = a^(2)b + ab^(2) - a^(2)c - ac^(2), B = b^(2)c + bc^(2) - a^(2)b - ab^(2) , and C = a^(2)c + ac^(2) - b^(2)c - bc^(2) , where a gt b gt c gt 0 and the equation Ax^(2) + Bx + C = 0 has equal roots, then a, b, c are in

Suppose A, B, C are defined as A = a^(2)b + ab^(2) - a^(2)c - ac^(2), B = b^(2)c + bc^(2) - a^(2)b - ab^(2) , and C = a^(2)c + ac^(2) - b^(2)c - bc^(2) , where a gt b gt c gt 0 and the equation Ax^(2) + Bx + C = 0 has equal roots, then a, b, c are in

The value of determinant |(bc-a^(2),ac-b^(2),ab-c^(2)),(ac-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ac-b^(2))| is a)always non -negative b)always non-positive c)always zero d)can't say anything