Home
Class 11
MATHS
" 8.If "a^(2)+b^(2)=7ab," prove that "lo...

" 8.If "a^(2)+b^(2)=7ab," prove that "log((a+b)/(3))=(1)/(2)(log a+log b)

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(2)+b^(2)=7ab, prove that log((1)/(3)(a+b))=(1)/(2)(log a+log b)

If a^(2) + b^(2) = 7 ab," prove that " log((a+b)/3) = 1/2 (log a + log b) .

If a^(2) + b^(2) = 7 ab," prove that " log((a+b)/3) = 1/2 (log a + log b) .

If a^(2)+b^(2)=23ab, then prove that (log((a+b)))/(5)=(1)/(2)(log a+log b)

If a^(2)+b^(2)=23ab, then prove that: (log(a+b))/(5)=(1)/(2)(log a+log b)

If a^(2)+b^(2)=7ab prove that ((log(a+b))/(3))'=(log a+log b)/(2)

If a^(2) + b^(2) = 7 ab, show that log ((a + b)/(3)) = (1)/(2) (log a + log b ).

If a^2+b^2 =7ab, then prove that "log"((a+b)/3)=1/2("log"a+"log"b)

If a^2+b^2=23ab ,then prove that log((a+b)/5)=1/2(log a+log b)

If a^(2) + b^(2) = 23ab , show that : "log" (a+b)/(5) = (1)/(2) (log a + log b) .