Home
Class 12
MATHS
P*f(x)=sqrt((x-1)/(x-2{x}))," where "{*}...

P*f(x)=sqrt((x-1)/(x-2{x}))," where "{*}" denotes the fractional part function."

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(1)/(sqrt({x}))-ln(x-2{x}) is (where {.} denotes the fractional part function)

The domain of function f(x)=ln(ln((x)/({x}))) is (where { ) denotes the fractional part function)

The domain of function f(x)=ln(ln((x)/({x}))) is (where f ) denotes the fractional part function

The domain of function f(x)=ln(ln((x)/({x}))) is (where f ) denotes the fractional part function

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x.

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x).

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x).

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x.

Range of the function f(x)=({x})/(1+{x}) is (where "{*}" denotes fractional part function)

The domain of the function f(x)=(sqrt(x^(12)-x^(3)+x^(4)-x+1))/(2sqrt(2{x}^(2)-3{x}+1)) (where {} denotes the fractional part functio) is