Home
Class 11
MATHS
If f: (-pi/2, pi/2) -> (-oo, oo) is defi...

If `f: (-pi/2, pi/2) -> (-oo, oo)` is defined by `f(x)=tan x` then `f^(-1) (2+sqrt(3))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

f:(-(pi)/(2),(pi)/(2))rarr(-oo,oo) defined by f(x)=tan x is

f: [0, oo) rarr [4, oo) is defined by f(x)=I^(2)+4 then f^(-1)(13)=

If f[1, oo)rarr[1, oo) is defined by f(x)=2^(x(x-1)) then f^(-1)(x)=

If f:[1,oo) to [1,oo) is defined by f(x) = 2^(x(x-1)) then find f^(-1)(x) .

If the function f: [2, oo) rarr [-1, oo) is defined by f(x)=x^(2)-4x+3 then f^(-1)(x)=

If f:[1, oo) rarr [1, oo) is defined as f(x) = 3^(x(x-2)) then f^(-1)(x) is equal to

f:(-oo,oo)rarr(-oo,oo) defined by f(x)=|x| is

If f: [1, oo) rarr [5, oo) is given by f(x) = 3x + (2)/(x) , then f^(-1) (x) =

If f:[1, oo) rarr [2, oo) is defined by f(x)=x+1/x , find f^(-1)(x)