Home
Class 12
MATHS
|[b^(2)-ab,b-c,bc-ac],[ab-a^(2),a-b,b^(2...

|[b^(2)-ab,b-c,bc-ac],[ab-a^(2),a-b,b^(2)-ab],[bc-ac,c-a,ab-a^(2)]|

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: [[b^2-ab,b-c,bc-ac],[ab-a^2,a-b,b^2-ab],[bc-ac,c-a,ab-a^2]]=0

Without expanding prove that [{:(b^(2)-ab,b-c,bc-ac),(ab-a^(2),a-b,b^(2)-ab),(bc-ac,c-a,ab-a^(2)):}]=0

The determinant |(b^2-ab,b-c,-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-a,ab-a^2)| equals :

|(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))|=

Show that |(0,a,c),(a,0,b),(c,b,0)|^(2)=|(2ac,ab,bc),(ab,-a^(2),-ac+b^(2)),(bc,-ac+b^(2),-c^(2))|

If |{:(bc-a^(2),ac-b^(2),ab-c^(2)),(ac-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ac-b^(2)):}|=k(a^(3)+b^(3)+c^(3)-3abc)^(l) then the value of (k, l) is

(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ac)

|(a^(2)+x,ab,ac),(ab,b^(2)+x,bc),(ac,bc,c^(2)+x)|