Home
Class 12
MATHS
If vec a , vec ba n d vec c are three n...

If ` vec a , vec ba n d vec c` are three non-coplanar vectors, then `( vec a+ vec b+ vec c)dot[( vec a+ vec b)xx( vec a+ vec c)]` equals `0` b. `[ vec a vec b vec c]` c. `2[ vec a vec b vec c]` d. `-[ vec a vec b vec c]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a , vec ba n d vec c are three non-coplanar vectors, then ( vec a+ vec b+ vec c)dot[( vec a+ vec b)xx( vec a+ vec c)] equals a. 0 b. [ vec a vec b vec c] c. 2[ vec a vec b vec c] d. -[ vec a vec b vec c]

If vec a ,\ vec b ,\ vec c are three non coplanar vectors, then ( vec a+ vec b+ vec c)dot[( vec a+ vec b)xx) vec a+ vec c)] equals [ vec a\ vec b\ vec c] b. "\ "0"\ " c. 2[ vec a\ vec b\ vec c] d. -[ vec a\ vec b\ vec c]

( vec a+2 vec b- vec c)dot{( vec a- vec b)xx( vec a- vec b- vec c)} is equal to [ vec a\ vec b\ vec c] b. c. 2[ vec a\ vec b\ vec c] d. 3[ vec a\ vec b\ vec c]

( vec a+ vec b)dot( vec b+ vec c)xx( vec a+ vec b+ vec c)= a. [ vec a\ vec b\ vec c] b. 0 c. 2[ vec a\ vec b\ vec c] d. -[ vec a\ vec b\ vec c]

( vec a+ vec b)dot( vec b+ vec c)xx( vec a+ vec b+ vec c)= [ vec a\ vec b\ vec c] b. "\ "0"\ " c. 2[ vec a\ vec b\ vec c] d. -[ vec a\ vec b\ vec c]

If vec a , vec b , vec c are three non-coplanar vectors, prove that [ vec a+ vec b+ vec c vec a+ vec b vec a+ vec c]=-[ vec a vec b vec c]

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec a.vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec b.vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec c. vec d)/([ vec a vec b vec c])( vec axx vec b)

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a