Home
Class 9
MATHS
" 9.Factorize : "(a-b+c)^(2)+(b+c-a)^(2)...

" 9.Factorize : "(a-b+c)^(2)+(b+c-a)^(2)+2(a-b+c)(b-c+a)

Promotional Banner

Similar Questions

Explore conceptually related problems

The expression (a-b)^3+\ (b-c)^3+\ (c-a)^3 can be factorized as (a) (a-b)(b-c)(c-a) (b) 3(a-b)(b-c)(c-a) (c) -3\ (a-b)(b-c)(c-a) (d) (a+b+c)(a^2+b^2+c^2-a b-b c-c a)

Factorize: 6a b-b^2+12 a c-2b c

Factorize: a^2+b^2+2(a b+b c+c a)

The expression (a-b)^(3)+(b-c)^(3)+(c-a)^(3) can be factorized as (a)(a-b)(b-c)(c-a)(b)3(a-b)(b-c)(c-a)(c)-3(a-b)(b-c)(c-a)(d)(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca)

Factorize the following expressions (a-b+c)^2+(b-c+a)^2+2(a-b+c)(b-c+a)

Resolve the following into factor. a^(2) (b - c) + b^(2) (c - a) + c^(2) (a -b)

Factorize a(b^(2)-c^(2))+b(c^(2)-a^(2))+c(a^(2)-b^(2))

Find the factors of a^(2) (b+c) + b^(2) (c +a) + c^(2) (a +b) +2abc

Using factor theorem, show that a - b is the factor of a(b^2 -c^2)+ b(c^2 -a^2)+ c(a^2 - b^2) .