Home
Class 9
MATHS
([sqrt(5)-sqrt(2)],[a+-b])([sqrt(5)+sqrt...

([sqrt(5)-sqrt(2)],[a+-b])([sqrt(5)+sqrt(2)],[a+b])

Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt(5)-sqrt(2))(sqrt(5)+sqrt(2))^(2)

If a=(sqrt(5)+sqrt(2))/(sqrt(5)-sqrt(2)) and b=(sqrt(5)-sqrt(2))/(sqrt(5)+sqrt(2)), find the value of (a^(2)+ab+b^(2))/(a^(2)-ab+b^(2))

If a= (sqrt(5) + sqrt(2))/(sqrt(5) -sqrt(2)) and b = (sqrt(5)-sqrt(2))/(sqrt(5)+sqrt(2)) show that 3a^(2) + 4ab -3b^(2) = 4 +(56)/(3) sqrt(10)

Simplify the following expressions : (a) (sqrt(3)+sqrt(5))^(2) (b) (sqrt(5)-sqrt(2))^(2)

If a = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)) and b = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) then value of sqrt(3a^2 - 5ab + 3b^2) is

If a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and b=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) then find a^(2)+b^(2)-5ab

Simplify (a) (sqrt(8)-sqrt(6))^2 (b) (sqrt(5)-sqrt(8))^2

(sqrt(5)a+sqrt(3)b)^(2)

If x=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)) and y=(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(2)), then x+y+xy=9(b)5(c)17(d)7, then

The value of the determinant, " "|{:(sqrt(13)+sqrt(3), 2sqrt(5), sqrt(5)), (sqrt(15)+sqrt(26), 5, sqrt(10)), (3+sqrt(65), sqrt(15), 5):}| is :a) 5(sqrt(6)-5) b) 5sqrt(3)(sqrt(6)-5) c) sqrt(5)(sqrt(6)-sqrt(3)) d) sqrt(2)(sqrt(7)-sqrt(5))