Home
Class 9
MATHS
p(x)=x^(3)-6x^(2)+9x+3,8(x)=x-1...

p(x)=x^(3)-6x^(2)+9x+3,8(x)=x-1

Promotional Banner

Similar Questions

Explore conceptually related problems

Find quotient and remainder p(x)=x^(3)-6x^(2)+9x+3,g(x)=x-1

Using the remainder theorem , find the remainder , when p (x) is divided by g (x) , where p(x)=x^(3)-6x^(2)+9x+3,g(x)=x-1 .

Verify the division algorithm for the polynomials p(x)=2x^(4)-6x^(3)+2x^(2)-x+2andg(x)=x+2 . p(x)=2x^(3)-7x^(2)+9x-13,g(x)=x-3 .

Find all the points of local maxima and minima of the f(x)=x^(3)-6x^(2)+9x-8

Using factor theorem , show that g (x) is a factor of p(x) , when p(x)=2x^(4)+9x^(3)+6x^(2)-11x-6,g(x)=x-1

If p(x)=8x^(3)-6x^(2)-4x+3 and g(x) = (x)/(3)-(1)/(4) then check whether g (x) is a factor of p(x) or not.

If f(x) = x^(3) - 6x^(2) + 9x +3 be a decreasing function, then x lies in-

If f(x) = x^(3) - 6x^(2) + 9x + 3 be a decreasing function, then x lies in