Home
Class 12
MATHS
prove that b^2c^2+c^2a^2+a^2b^2geqa b c(...

prove that `b^2c^2+c^2a^2+a^2b^2geqa b c(a+b+c)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that b^2c^2+c^2a^2+a^2b^2> a b cxx(a+b+c)(a ,b ,c >0) .

Prove that b^2c^2+c^2a^2+a^2b^2> a b cxx(a+b+c)(a ,b ,c >0) .

Prove that 2b^(2)c^(2) +2c^(2)a^(2) +2a^(2)b^(2) -a^(4)-b^(4)-c^(4)= (a+b+c) (b+c-a) (c+a-b) (a+b-c)

Prove that |a b+c a^2b c+a b^2c a+b c^2|=-(a+b+c)xx(a-b)(b-c)(c-a)dot

Prove that |a b+c a^2b c+a b^2c a+b c^2|=-(a+b+c)xx(a-b)(b-c)(c-a)dot

Prove that: |(b+c)^2a^2a^2b^2(c+a)^2b^2c^2c^2(a+b)^2|=2a b c(a+b+c)^3

If a/b =b/c and a,b, c gt 0 , then prove that (a+b)^2/(b+c)^2 = (a^2 +b^2)/(b^2 +c^2)

Prove that |[(b+c)^2, a^2, bc],[(c+a)^2, b^2, ca],[(a+b)^2, c^2, ab]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

if a:b = b:c prove that ((a+b)/(b+c))^2 = (a^2+b^2)/(b^2+c^2) .

Prove that: 2a^2+2b^2+2c^2-2a b-2b c-2c a=[(a-b)^2+(b-c)^2+(c-a)^2]