Home
Class 12
MATHS
Using mean value theorem, prove that tan...

Using mean value theorem, prove that `tanx > x` for all `x(0,pi/2)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using mean value theorem,prove that tan x>x for all x(0,(pi)/(2))

Prove that tan x gt x for all x in [0, (pi)/(2)]

Show that tan x gt x for all x in [0, pi//2) .

Using mean value theorem, prove that sin xltx,in(0.pi//2) .

Using Largrange's mean value theorem, prove that, tan^(-1)x lt x

Using Lagrange's mean value theorem prove that, e^(x) gt 1 +x

Using Lagranges mean value theorem,show that sin(:x for x:)0.

Using mean value theorem prove that for , a gt 0, bgt 0, |e^(-a)-e^(-b)| lt| a-b|

Using L M V T prove that tanx > x in (0,pi/2),

Using Lagrange's mean value theorem prove that if b gt a gt 0 "then " (b-a)/(1+b^(2)) lt tan^(-1) b -tan^(-1) a lt (b-a)/(1+a^(2))