Home
Class 12
MATHS
On the ellipse 2x^2 + 3y^2 = 1 the point...

On the ellipse `2x^2 + 3y^2 = 1` the points at which the tangent is parallel to `4x = 3y + 4`, are (i) `(2/sqrt11,1/sqrt11) or (-2/sqrt11,-1/sqrt11) ` (ii) `(-2/sqrt11,1/sqrt11) or (2/sqrt11,-1/sqrt11) ` (iii) `(-2/5,-1/5)` (iv) `(3/5,2/5)or(-3/5,-2/5)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(sqrt(6)+sqrt(5)-11)

Show that 1/(sqrt11+3) , 1/(sqrt13+3) , 1/(sqrt11+sqrt13) are in A.P.

Simplify : (i) (sqrt(5)+sqrt(2))^2 (ii) (sqrt(11)-sqrt(5))^2

Simplify : (i) (sqrt(5)+sqrt(2))^2 (ii) (sqrt(11)-sqrt(5))^2

Simplify : (sqrt(5)+sqrt(2))^(2) (ii) (sqrt(11)-sqrt(5))^(2)

Simplify (sqrt(11)+sqrt(8))(sqrt(11)-2sqrt(2))

(1)/(sqrt(11-2sqrt(30)))-(3)/(sqrt(7-2sqrt(10)))-(4)/(sqrt(8+4sqrt(3)))

Simplify: 1/sqrt(11-2sqrt(30))-3/(sqrt7-2sqrt(10))-4/(sqrt(8+4sqrt3))

Value of 1/sqrt(11-2sqrt30)-3/sqrt(7-2sqrt10)-4/(sqrt(8+4sqrt3)) is

If x=sqrt(7)-sqrt(5) and y=sqrt(13)-sqrt(11) then