Home
Class 12
MATHS
If In=int( lnx)^n dx then In+nI(n-1)...

If `I_n=int( lnx)^n dx` then `I_n+nI_(n-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int(ln x)^(n)dx then I_(n)+nI_(n-1)

If n in N and I_(n) = int(log x)^(n) dx , then I_(n)+nI_(n-1) =

If I_(n)= int (log x)^(n)dx then I_(n)+nI_(n-1)=

If I_n = int sin^n x dx then nI_n - (n - 1)I_(n-2) = f(x)+c where f(x) =

If I_(n)=int("In "x)^(n)dx, " then " I_(n)+nI_(n-1)=

If I_n = int sin^n x \ dx, then n I_n - (n-1) I_(n-2) equals