Home
Class 12
MATHS
if p^2=a^2costheta+b^2sin^2theta then pr...

if `p^2=a^2costheta+b^2sin^2theta` then prove that `(p+(d^2p)/(d theta^2))=(a^2b^2)/p^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

if p^(2)=a^(2)cos theta+b^(2)sin^(2)theta then prove that (p+(d^(2)p)/(d theta^(2)))=(a^(2)b^(2))/(p^(3))

If p^(2) = a^(2) cos^(2) theta + b^(2) sin^(2)theta , prove that p + (d^(2p)/(d theta^(2))) =(a^(2)b^(2))/p^(3)

If p^(2)=a^(2)cos^(2)theta+b^(2)sin^(2)theta , then show that : p+(d^(2)p)/(d theta^(2))=(a^(2)b^(2))/p^(3) .

If p^(2)=a^(2)cos^(2)theta+b^(2)sin^(2)theta , show that, p+(d^(2)p)/(d theta^(2))=(a^(2)b^(2))/(p^(3)) .

If p^(2)=a^(2)cos^(2)theta+b^(2)sin^(2)theta then

If p=a^2cos^2theta+b^2 sin^2 theta , where a^2+b^2=c^2 , then 4p+(d^2p)/(d theta^2) is equal to

If sin theta+tan theta=P then prove that (p^(2)-1)/(p^(2)+1)=sin theta

If sec theta+tan theta =p then prove that (p^2-1)/(p^2+1)=sin theta

If cos ec theta+cot theta=p, then prove that cos theta=(p^(2)-1)/(p^(2)+1)

If cosec theta+cottheta=p ,then prove that: cos theta=(p^(2)-1)/(p^(2)+1)