Home
Class 12
MATHS
Let In=int(x^n)/(sqrt(x^2+2x+5))dx then...

Let `I_n=int(x^n)/(sqrt(x^2+2x+5))dx` then `I_n=(x^(m-1))/nsqrt(x^2+2x+5)-lambdaI_(n-1)-muI_(n-2)` where `lambda ,mu and 'm'` are involving `'n'` then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I_(n)=int_(0)^(1)x^(n)sqrt(1-x^(2))dx. Then lim_(nrarroo)(I_(n))/(I_(n-2))=

Let I_(n)=int_(0)^(1)x^(n)sqrt(1-x^(2))dx. Then lim_(nrarroo)(I_(n))/(I_(n-2))=

Let I_(n)=int_(0)^(1)x^(n)sqrt(1-x^(2))dx. Then lim_(nrarroo)(I_(n))/(I_(n-2))=

Let I_(n)=int_(0)^(1)x^(n)sqrt(1-x^(2))dx. Then lim_(nrarroo)(I_(n))/(I_(n-2))=

If I_n = int sin^n x \ dx, then n I_n - (n-1) I_(n-2) equals

If I_(n) = int sin^(n)x dx , then nI_(n)-(n-1)I_(n-2)=

If I_(n)=int(x^(n)dx)/(sqrt(x^(2)+a)) then prove that I_(n)+(n-1)/(n)al_(n-2)=(1)/(n)x^(n-1)*sqrt(x^(2)+a)

If I_n=int x^nsqrt(a^2-x^2)dx, prove that I_n=-(x^(n-1)(a^2-x^2)^(3/2))/((n+2))+((n+1))/((n+2))a^2I_(n-2)

If I_n=int x^nsqrt(a^2-x^2)dx, prove that I_n=-(x^(n-1)(a^2-x^2)^(3/2))/((n+2))+((n+1))/((n+2))a^2I_(n-2)

Let I_(n) = int_(0)^(1//2)(1)/(sqrt(1-x^(n))) dx where n gt 2 , then