Home
Class 8
MATHS
(cot^(2)A*sec A)/(cos^(2)A*sin^(2)A)=sec...

`(cot^(2)A*sec A)/(cos^(2)A*sin^(2)A)=sec A*cosec^(4)A`

Promotional Banner

Similar Questions

Explore conceptually related problems

The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cosec^(2)A-1) is equal to

The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cosec^(2)A-1) is equal to

Prove that : (sin A - cos A) (1 + tan A + cot A) = (sec A)/ (cosec^(2) A) - (cosec A)/ (sec^(2) A)

The value of [(cos^(2)A(sin A+cos A))/(cos ec^(2)A(sin A-cos A)),+(sin^(2)A(sin A-cos A))/(sec^(2)A(sin A+cos A))] (sec^(2)A-cosec^(2)A)

Prove that: i) cot^(2)A+cot^(4)A="cosec"^(4)A-"cosec"^(2)A ii) tan^(2)A+tan^(4)A=sec^(4)A-sec^(2)A

Prove that: i) cot^(2)A+cot^(4)A="cosec"^(4)A-"cosec"^(2)A ii) tan^(2)A+tan^(4)A=sec^(4)A-sec^(2)A

Prove that: 2sec^(2)A-sec^(4)A-2"cosec"^(2)A+"cosec"^(4)A=cot^(4)A-tan^(4)A

Prove that: 2sec^(2)A-sec^(4)A-2"cosec"^(2)A+"cosec"^(4)A=cot^(4)A-tan^(4)A

7. (sin A+cos A)(cot A+tan A)=sec A+cosec A