Home
Class 12
MATHS
Given H(x)=f(x).phi(x) and f prime (x).p...

Given `H(x)=f(x).phi(x) and f prime (x).phi prime(x)=c` then prove that `(F prime prime prime)/F=(f prime prime prime)/f+(phi prime prime prime)/phi,` where `c in` constant, when `f(x),phi(x),F(x)` are differentiable

Promotional Banner

Similar Questions

Explore conceptually related problems

If F(x)=f(x)dotg(x) and f^(prime)(x)dotg^(prime)(x)=c , prove that (F")/F=f^(primeprime)/f+g^(primeprime)/g+(2c)/(fg)&F^(primeprimeprime)/F=f^(primeprimeprime)/f+g^(primeprimeprime)/g

If f(x)=x|x|, then prove that f^(prime)(x)=2|x|

If f(x)=x|x|, then prove that f^(prime)(x)=2|x|

If f(x)=x|x|, then prove that f^(prime)(x)=2|x|

If f(x)=x|x|, then prove that f^(prime)(x)=2|x|

If f(x)=x|x|, then prove that f^(prime)(x)=2|x|

If F(x)=f(x)dotg(x) and f^(prime)(x)dotg^(prime)(x)=c , prove that (F^(primeprime))/F=f^(primeprime)/f+g^(primeprime)/g+(2c)/(fg)&F^(primeprimeprime)/F=f^(primeprimeprime)/f+g^(primeprimeprime)/g

If f(x) attains a local minimum at x=c , then write the values of f^(prime)(c) and f^(prime)prime(c) .

If f(x),g(x) and h(x) are three polynomials of degree 2, then prove that phi(x) = |[f(x),g(x),h(x)],[f ^ (prime)(x),g^(prime)(x),h^(prime)(x)],[f^(primeprime)(x),g^(primeprime)(x),h^(primeprime)(x)]| is a constant polynomial.

If f(x),g(x) and h(x) are three polynomials of degree 2, then prove that phi(x) = |[f(x),g(x),h(x)],[f ^ (prime)(x),g^(prime)(x),h^(prime)(x)],[f^(primeprime)(x),g^(primeprime)(x),h^(primeprime)(x)]| is a constant polynomial.