Home
Class 12
MATHS
int0^1sin^(- 1)(xsqrt(1-x)-sqrt(x)sqrt(1...

`int_0^1sin^(- 1)(xsqrt(1-x)-sqrt(x)sqrt(1-x^2))dx `

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))dx

Evaluate: int_0^1 sin^-1 (xsqrt(1-x) -sqrtxsqrt(1-x^2))dx.

int_0^1 sin^-1x/sqrt(1+x)dx

int_0^1sin^(-1)(x)/sqrt(1-x^2) dx

If y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2]) and 0 < x < 1, then find (dy)/(dx)

If y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2)) and (dy)/(dx)=1/(2sqrt(x(1-x)))+p , then p is equal to 0 (b) 1/(sqrt(1-x)) sin^(-1)sqrt(x) (d) 1/(sqrt(1-x^2))

(d)/(dx)[sin^(-1)(xsqrt(1 - x)- sqrt(x)sqrt(1 - x^(2)))] is equal to

Find the (dy)/(dx) of y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2))

inte^(sin^(-1)x)((x+sqrt(1-x^2))/(sqrt(1-x^2)))dx=