Home
Class 12
MATHS
[-a^(2)" ab ac "],[ba-b^(2)bc],[caquad c...

[-a^(2)" ab ac "],[ba-b^(2)bc],[caquad cb-c^(2)]=4ab^(2)c^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |[-a^(2),ab,ac],[ba,-b^(2),bc],[ca,cb,-c^(2)]|=4a^(2)b^(2)c^(2)

Prove that: |[-a^2, ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]|=4a^2b^2c^2

By using properties of determinants, prove that |[-a^2,ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]|=4a^2b^2c^2

Show that Delta=abs[[-a^2,ab,ac],[ba,-b^2,bc],[ac,bc,-c^2]]=4a^2b^2c^2

Prove the following: [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=4a^2b^2c^2

abs([-a^2,ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]) = 4a^2.b^2.c^2

Prove that |(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))| = 4a^(2)b^(2)c^(2) .

Prove that |(-a^2,ab,ac),(bc,-b^2,bc),(ca,cb,-c^2)|=4a^(2)b^(2) c^(2) .

Using the property of determinants and without expanding {:[( -a^(2) , ab,ac),( ba,-b^(2) , bc) ,( ca, cb, -c^(2)) ]:} =4a^(2) b^(2) c^(2)

By using the properties of determinants,prove that |[a^2+1,ab ,ac],[ab,b^2+1,bc],[ca ,cb,c^2+1]|=1+a^2+b^2+c^2