Home
Class 10
MATHS
" (5) Let us show that "sec^(2)12^(@)-(1...

" (5) Let us show that "sec^(2)12^(@)-(1)/(tan^(2)78^(@))=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sec^(2)12^(@)-(1)/(tan^(2)78^(@))=1 .

sec ^ (2) 12 ^ (0) - (1) / (tan ^ (2) 78 ^ (@))

sec^(-1)((1+tan^(2)x)/(1-tan^(2)x))

Show that "sec"^(2)(Tan^(-1)2)+"cosec"^(2)(Cot^(-1)2) =10

Show that Sec^(2)(cot^(-1)3)+(Cosec^(2)(tan^(-1)2))=85/36

The value of sec^2 12^@-frac(1)(tan^2 78^@ is (A) 0 (B) 1 (C) 2 (D) 3

Show that sec A(1-sin A)(sec A+tan A)=1

Without using tables, evaluate the following: 3 cos 68^(@) . "cosec" 22^(@) - (1)/(2) tan 43^(@) .tan 47^(@) .tan 12^(@).tan 60^(@).tan 78^(@) .

If sec theta+tan theta=p,quad show that (p^(2)-1)/(p^(2)+1)=sin theta

If tan theta+sec theta=x" show that 2 tan "theta=x -1/x, 2 sec theta=x+1/x. Hence show that sin theta=(x^(2)-1)/(x^(2)+1)