Home
Class 12
MATHS
" If "y=sec^(-1)((1)/(2x^(2)-1))" find "...

" If "y=sec^(-1)((1)/(2x^(2)-1))" find "(dy)/(dx)" (Where "0

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = sec^(-1) ((1)/(2x^(2) -1)) " then " (dy)/(dx) = ?

y = sec^(-1)((1+x^(2))/(1-x^(2))), find dy/dx.

Find (dy)/(dx)," if "y=sec^(-1) ((1)/(2x^(2)-1)), 0 lt x lt (1)/(sqrt2)

If y=sec^(-1)(1/(2x^2-1));0

If y = sec^-1(1/(2x^2-1)) , then find dy/dx , given 0 < x < 1/sqrt2

If y=(sec^(2)x)^((1)/(x)),then (dy)/(dx)=

y=(1+x^2)/(1-x^2) , find dy/dx

Find (dy)/(dx) if y= sec^(-1)((1)/(2x^(2)-1)), 0 lt x lt (1)/(sqrt(2))

Find (dy)/(dx) in the following : y= sec^(-1) ((1)/(2x^(2)-1)), 0 lt x lt (1)/(sqrt(2)) .