Home
Class 11
MATHS
" If "2cos A=(sin B)/(sin C)" then show ...

" If "2cos A=(sin B)/(sin C)" then show that the triangle is isosceles."

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2 cos A = (sin B)/(sin C) then show that the triangle is isosceles.

In a triangle ABC, if cos A=(sin B)/(2sin C), show that the triangle is isosceles.

If cos B=(sin A)/(2sin C) then prove that the triangle is isosceles.

In a triangle A B C , if cos A=(sinB)/(2sinC) , show that the triangle is isosceles.

In a Delta ABC, if cos C = (sin A)/(2 sin B) , show that the triangle is isosceles.

In a o+ABC, if cos C=(sin A)/(2sin B), prove that the triangle is isosceles.

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

In any triangle ABC, if cosA cos B + sin A sin B sinC =1 then prove that the triangle in an isosceles right angled.