Home
Class 12
MATHS
The value of intx/sqrt(x^4+x^2+1)dx equa...

The value of `intx/sqrt(x^4+x^2+1)dx` equals (i) `1/2log (x^2+sqrt(x^4+x^2+1))` (ii) `1/2log (x^2+1/2+sqrt(x^4+x^2+1))` (iii) `log (x^2+1/2+sqrt(x^4+x^2+1))` (iv) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

int(x^4-1)/(x^2sqrt(x^4+x^2+1))dx= sqrt(x^2+1/(x^2)+1)+C (sqrt(x^4+x^2+1))/(x^2)+C (sqrt(x^4+x^2+1))/x+C (d) none of these

int(x^(4)-1)/(x^(2)sqrt(x^(2)+x^(2)+1))dx=sqrt(x^(2)+(1)/(x^(2))+1)+C(sqrt(x^(2)+x^(2)+1))/(x^(2))+C(sqrt(x^(4)+x^(2)+1))/(x)+C(d) none of these

Evaluate int sqrt(x^(2)+1)(log(x^(2)+1)-2log x)/(x^(4))dx

int(sqrt(x^(2)+1)(log(x^(2)+1)-2log x))/(x^(4))dx

Evaluate : int (sqrt(x^(2) + 1) ( log (x^(2) + 1) - 2 log x))/( x^(4)) dx

int(x^(4)-1)/(x^(2))sqrt(x^(4)+x^(2)+1)dx equal to (A) sqrt((x^(4)+x^(2)+1)/(x)+c(B)sqrt(x^(4)+2-(1)/(x^(2)))+c)sqrt((x^(4)-x^(2)+1)/(x))+c

If S={x in N:2+(log)_(2)sqrt(x+1)>1-(log)_((1)/(2))sqrt(4-x^(2))}, then (a)S={1}(b)S=Z(d)S=N(d) none of these

IF [y{sqrt(x^2 + 1)- log {1/x +sqrt(1+1/x^2)}] find dy/dx

The value of int_(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x +sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(-x)dx ,