Home
Class 12
MATHS
" 17.(i) ""If "x=sin t,y=sin pt," then p...

" 17.(i) ""If "x=sin t,y=sin pt," then prove that "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+p^(2)y=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sin t and y=sin pt, prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+p^(2)y=0

If x=sin t,y=sin2t, prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+4y=0

If y=sin^(-1)x ,then prove that (1-x^(2))(d^(2)y)/(dx^(2))=x(dy/dx)

If y=sin^(-1)x then prove that (1-x^(2))(d^(y))/(dx^(2))-x(dy)/(dx)=0

If y= sin^(-1)x then prove that (1-x^(2))(d^(2)y)/(dx^(2))-x (dy)/(dx)=0

If y=sin^(-1)x, prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If x =sin t,y = sin 2t then prove that (1-x^2)(d^2y)/(dx^2)- x dy/dx + 4y = 0

If y=sin(log x), then prove that (x^(2)d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If x=sint,y=sinpt , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2 y=0 .