Home
Class 12
MATHS
(3-sqrt7)(3+sqrt7)=?...

`(3-sqrt7)(3+sqrt7)=?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((3 - \sqrt{7})(3 + \sqrt{7})\), we can use the algebraic identity for the difference of squares. The identity states that: \[ (a - b)(a + b) = a^2 - b^2 \] ### Step-by-step Solution: 1. **Identify \(a\) and \(b\)**: - Here, we can identify \(a = 3\) and \(b = \sqrt{7}\). 2. **Apply the difference of squares identity**: - Using the identity, we can rewrite the expression: \[ (3 - \sqrt{7})(3 + \sqrt{7}) = a^2 - b^2 \] 3. **Calculate \(a^2\)**: - Calculate \(3^2\): \[ 3^2 = 9 \] 4. **Calculate \(b^2\)**: - Calculate \((\sqrt{7})^2\): \[ (\sqrt{7})^2 = 7 \] 5. **Substitute \(a^2\) and \(b^2\) into the identity**: - Now substitute the values back into the equation: \[ 9 - 7 \] 6. **Perform the subtraction**: - Finally, calculate: \[ 9 - 7 = 2 \] ### Final Answer: Thus, the value of \((3 - \sqrt{7})(3 + \sqrt{7})\) is \(2\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of log_((8-3sqrt7))(8+3sqrt7) is

If both a\ a n d\ b are rational numbers, find the values of a\ a n d\ b in each of the following equalities: (3+sqrt(7))/(3-sqrt(7))=a+bsqrt(7)

(i) Find a and b when (3+ sqrt(7)) /(3-sqrt(7))= (a+bsqrt(7))

State in each case whether true or false: 3sqrt(7)-2sqrt(7)= sqrt(7)

If sinx+cosx=(sqrt(7))/2, where x in 1s t quadrant, then tanx/2 is equal to (a) (3-sqrt(7))/3 (b) (sqrt(7)-2)/3 (c) (4-sqrt(7))/4 (d) none of these

Simplify the following expressions: (i) (11+sqrt(11))(11-sqrt(11)) (ii) (5+sqrt(7))(5-sqrt(7)) (iii) (sqrt(8)-sqrt(2))(sqrt(8)+sqrt(2)) (iv) (sqrt(7)-3)(sqrt(7)+3)

(sqrt15+sqrt35+sqrt21+5)/(sqrt3+2sqrt5+sqrt7)=?

Examine whether the following numbers are rational or irrational : (7- sqrt7) (7 + sqrt( 7))

Prove that (1)/(sqrt(7))=(1)/(sqrt(7))times(sqrt(7))/(sqrt(7))

Evaluate : (1)/(3-sqrt(8)) -(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2).