Home
Class 12
MATHS
xy gt0 {:("Quantity A","Quantity B"),(...

`xy gt0`
`{:("Quantity A","Quantity B"),((x+y)^(2),(x-y)^(2)):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compare the two quantities given: - Quantity A: \( (x + y)^2 \) - Quantity B: \( (x - y)^2 \) Given that \( xy > 0 \), this implies that both \( x \) and \( y \) are either both positive or both negative. ### Step-by-Step Solution: 1. **Expand Quantity A**: \[ (x + y)^2 = x^2 + 2xy + y^2 \] 2. **Expand Quantity B**: \[ (x - y)^2 = x^2 - 2xy + y^2 \] 3. **Compare the Two Quantities**: We need to compare: \[ x^2 + 2xy + y^2 \quad \text{(Quantity A)} \] and \[ x^2 - 2xy + y^2 \quad \text{(Quantity B)} \] 4. **Subtract Quantity B from Quantity A**: \[ (x + y)^2 - (x - y)^2 = (x^2 + 2xy + y^2) - (x^2 - 2xy + y^2) \] Simplifying this gives: \[ = 2xy + 2xy = 4xy \] 5. **Analyze the Result**: Since \( xy > 0 \), it follows that \( 4xy > 0 \). This means: \[ (x + y)^2 > (x - y)^2 \] 6. **Conclusion**: Therefore, Quantity A is greater than Quantity B: \[ \text{Quantity A} > \text{Quantity B} \] ### Final Answer: Quantity A is greater than Quantity B. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

{:("Quantity A","Quantity B"),((x)/(2),2x):}

{:("Quantity A","Quantity B"),(x+y,2x):}

xy gt 0 {:("Quantity A","Quantity B"),(x+y,0):}

{:("Quantity A","Quantity B"),(y,10):}

{:("Quantity A","Quantity B"),(x,12):}

{:("Quantity A","Quantity B"),((x)/(|x|),(y)/(|y|)):}

{:("Quantity A","Quantity B"),(y-x,50):}

{:("Quantity A","Quantity B"),(x,3x-4):}

{:("Quantity A","Quantity B"),(2^(y),((1)/(2))^(-y)):}

{:("Quantity A","Quantity B"),(w+y,x+z):}